Emissions of Ammonia and Other Nitrogen-Containing Volatile Organic Compounds from Motor Vehicles under Low-Speed Driving Conditions



(中文标题为本号自翻,请以原文标题为准)


来源https://pubs.acs.org/doi/10.1021/acs.est.2c00555?sessionid=

Abstract

Emissions of NH3 and nine nitrogen-containing volatile organic compounds (NVOCs) (C1–3-amines, C1–3-amides, and C1–3-imines) from motor vehicles powered by gasoline, diesel, and natural gas under low-speed driving conditions from roadside in situ measurements were characterized using a water-cluster chemical ionization mass spectrometer and trace gas monitors. The total emission strength of diesel trucks was the greatest followed by those of gasoline cars and natural gas cars. NH3 emission per vehicle was found to be 2–3 orders of magnitude greater than that of all NVOCs, regardless of the type of vehicle. Although much lower than the emissions of amides or imines, emissions of amines were sufficient to produce atmospheric concentrations exceeding the threshold level for amines to enhance atmospheric nucleation by several orders of magnitude. Different engine emission reduction technologies (e.g., three-way catalytic converter vs selective catalytic reduction) can lead to different NH3 and NVOC emission profiles. During the lifetime of a vehicle, its emission level was most likely to increase with its mileage. Source profiles of NH3 and NVOC emissions from the three types of vehicles were also obtained from the measurements. These profiles can be a valuable contribution to the air pollution management system in terms of source apportionment, elucidating the emission contributions from a specific type of vehicle.





Reference

Yang, D., Zhu, S., Ma, Y., Zhou, L., Zheng, F., Wang, L., Jiang, J., and Zheng, J.: Emissions of Ammonia and Other Nitrogen-Containing Volatile Organic Compounds from Motor Vehicles under Low-Speed Driving Conditions, Environmental Science & Technology, 10.1021/acs.est.2c00555, 2022.

平台声明:该文观点仅代表作者本人,零碳未来网 系信息发布平台,我们仅提供信息存储空间服务。

点赞(0) 打赏

评论列表 共有 0 条评论

暂无评论
立即
投稿

微信公众账号

微信扫一扫加关注

发表
评论
返回
顶部