梁海伟(左)与团队成员测试燃料电池膜电极。中国科学技术大学供图
氢燃料电池是未来能源脱碳的重要方向,而制备电池所需的铂基催化剂,存在活性低、用量大、成本高的问题,导致氢燃料电池“叫好不叫座”。
在10月22日发表于《科学》的一项研究中,中国科学技术大学教授梁海伟团队与北京航空航天大学教授水江澜团队合作,通过高温“硫固体胶”的合成方法,成功研发出一系列高性能铂基氢燃料电池催化剂,这对降低氢燃料电池成本、推动其大规模产业化具有重要意义。
“长大”的烦恼
催化剂是燃料电池的核心材料之一,占燃料电池电堆成本的40%以上。2020年9月,财政部、工信部等五部门联合发布《关于开展燃料电池汽车示范应用的通知》,明确指出要重点支持催化剂等关键材料和零部件的研发突破。
氢燃料电池因高效、清洁、无碳等优点,逐渐成为燃料电池界的“网红”。但目前打造“网红”所需成本仍然过高,尤其是铂基催化剂的使用。
铂族金属是金属中的贵族,因熔点高、强度大、电热性稳定、催化活性好等特点,广泛用于氢燃料电池等领域。但世界上铂族金属资源高度集中,80%以上位于南非。
而氢燃料电池阴极需要使用大量铂基催化剂来催化氧还原反应,铂资源的匮乏和高成本严重制约了燃料电池大规模产业化。
梁海伟告诉《中国科学报》,目前市场上使用较多的催化剂主要是铂碳催化剂和铂合金催化剂。但因其活性不高,铂的用量较大。
他认为,降低铂的用量,是氢燃料电池发展必须解决的问题,而提高铂基催化剂的活性就是一种高效途径。“与普通的固溶体合金相比,金属间铂合金在活性和稳定性方面都更具优势。”
但金属间铂合金的合成必须经历高温,高温又会造成铂合金纳米颗粒在碳载体上流动并团聚“长大”。一旦纳米颗粒“长大”,就会失去优势,催化剂活性就会严重降低。
为了打破这一“死循环”,防止颗粒“长大”,研究团队提出了一个设想:能不能让颗粒像胶水一样固定在碳材料上呢?
为此,他们采用了一种新颖的硫限域方法,即“硫固体胶”合成方法。该方法利用硫原子与铂原子之间强烈的相互作用,使铂基合金纳米颗粒在高温下像固体胶般“粘”在碳载体上,防止其“长大”。
最后,研究人员在保持颗粒尺寸小于5纳米的同时,完成双金属原子的有序化过程,合成得到了一系列小尺寸的铂金属间合金,建立了一个拥有46种合金催化剂的“材料库”。
实际上,梁海伟在德国进行博士后研究期间,就开展了小分子合成不同碳材料的相关研究。回国后,他带领团队制备了一类硫含量很高的多孔碳材料。
他告诉记者,国际上不乏团队开展硫掺杂碳载体合成的研究,但将其应用于铂金属间合金的合成,这是首次。在梁海伟看来,这得益于学科交叉的优势。“只做金属间合金合成,很难想到使用硫限域的方法;而只做硫限域研究,自然也想不到应用于金属间合金合成。”
传统理论错了吗
基于构建的46种催化剂“家族”,研究人员测试并筛选了大量催化剂的性能。他们发现铂合金催化活性与其表面应力存在强关联性:在很宽的压缩应变范围内,其氧还原活性随着压缩应变的增加呈现单调上升趋势。
有趣的是,这一现象有悖于经典理论预测的火山关系趋势。
“按照之前的理论预测,应变太小、太大都不好,适中才好。也就是说,应变和活性是一种火山曲线关系。显然,我们的实验结果并非如此。”梁海伟说。
这让研究人员产生很多疑问,难道理论预测是错误的?或者,测试的应变并不是真实的应变?
梁海伟认为,目前的研究还不足以证明孰对孰错。“但在科学上,若没有大量的合成和性能测试,是看不到这个构效关系的。”他说,“这起码提供了一个新的指南,如果能进一步增大应变,就能继续增强催化剂活性,有望将催化性能进一步推向峰值。”
实际上,这种新构效关系的发现,是团队最“意外”也最精彩的收获。
2016年,梁海伟回国后,就开始带领团队开展此项研究。很快,他们就研发了46种铂基合金催化剂“家族”,并于2018年第一次投稿。
投稿并不顺利。其中一位审稿人认为,合成催化剂和催化剂性能之间的关联性不强,研究不具备很强的科学性。
为此,研究团队又花费一年多的时间补充数据,并测试、筛选了大量催化剂的性能。在分析数据时,他们发现了这一有趣又违背传统理论的现象。随后,他们重新调整了论文内容。
审稿人认为,“这项研究展示的尺寸小于5纳米的金属间化合物纳米颗粒对催化应用至关重要。作者向我们展示了系列二元和多元铂基金属间化合物的尺寸控制合成,令人印象深刻”。
“5纳米左右可以说是一个临界点,颗粒尺寸越大,表面原子所占据的比例就越低,会造成很多铂原子的浪费。”梁海伟解释说,修改前后的论文,风格完全不同,也发现了更具科学性的现象。“坦率地说,我们很感谢审稿人提出的意见。”
对于这一有悖于经典理论预测的现象,他表示,接下来将会进一步探究其背后的原因。
有望降低成本
根据国际氢能委员会预计,到2050年,氢能将承担全球18%的能源终端需求,创造超过2.5万亿美元的市场价值。
“我们从合成的46种催化剂‘家族’中筛选出几种高活性催化剂,使低铂氢燃料电池性能达到了目前世界先进水平。”水江澜说。
他告诉记者,合成的铂镍合金催化剂活性是目前商业铂碳催化剂活性的5倍以上;为达到相当的氢燃料电池性能而合成的合金催化剂铂用量也只有商业铂碳催化剂铂用量的1/10。
但梁海伟也指出,目前,氢燃料电池催化剂的研究,国外技术仍是全面领先。“这项研究在科学上具有一定价值,但离产业化还有一定距离。”
他表示,一方面需要解决量产的问题,降低催化剂的制备成本;另一方面需要实现碳载体改性,增强局域氧气和质子传输阻抗。“前者难度不是很大,后者仍是一个很大的挑战。”梁海伟说。
来源:科技日报
梁海伟简介:
梁海伟,中国科学技术大学化学系/合肥微尺度物质科学国家研究中心教授、博士生导师。于2006年7月获华东师范大学化学专业学士学位,2011年6月获中国科学技术大学博士学位,师从俞书宏院士。2012年5月赴德国美因茨马普高分子研究所从事博士后研究,合作导师Klaus Müllen教授和冯新亮教授。2016年初回国,入职中国科学技术大学化学系,并兼任合肥微尺度物质科学国家研究中心博士生导师。同年入选海外高层次人才青年项目。2013年获全国百篇优秀博士学位论文;2016年国家自然科学二等奖(排名第二);2018~2020三个年度连续入选科睿唯安“高被引科学家”;2020年中科院海外高层次人才计划终期考核优秀。迄今为止,共计在Science、Sci. Adv.、Nat. Commun.、J. Am. Chem. Soc.、Angew. Chem. Int. Ed.、Adv. Mater.等期刊上发表SCI论文100余篇,论文共被引用1万6千余次,H-Index 56(Google Scholar)。目前研究方向是低铂原子有序合金氢燃料电池催化剂。
讲座PPT回放
梁海伟教授:原子有序合金氢燃料电池催化剂
https://mp.weixin.qq.com/s/FoxqBMT2oO6CPhcKb_9ZTA
平台声明:该文观点仅代表作者本人,氢能网系信息发布平台,我们仅提供信息存储空间服务。
发表评论 取消回复